Parallel Personalized Pagerank on Dynamic Graphs
نویسندگان
چکیده
Personalized PageRank (PPR) is a well-known proximity measure in graphs. To meet the need for dynamic PPR maintenance, recent works have proposed a local update scheme to support incremental computation. Nevertheless, sequential execution of the scheme is still too slow for highspeed stream processing. Therefore, we are motivated to design a parallel approach for dynamic PPR computation. First, as updates always come in batches, we devise a batch processing method to reduce synchronization cost among every single update and enable more parallelism for iterative parallel execution. Our theoretical analysis shows that the parallel approach has the same asymptotic complexity as the sequential approach. Second, we devise novel optimization techniques to e↵ectively reduce runtime overheads for parallel processes. Experimental evaluation shows that our parallel algorithm can achieve orders of magnitude speedups on GPUs and multi-core CPUs compared with the state-ofthe-art sequential algorithm.
منابع مشابه
Coding Method for Parallel Iterative Linear Solver
Computationally intensive distributed and parallel computing is often bottlenecked by a small set of slow workers known as stragglers. In this paper, we utilize the emerging idea of “coded computation” to design a novel error-correctingcode inspired technique for solving linear inverse problems under specific iterative methods in a parallelized implementation affected by stragglers. Example app...
متن کاملLocal Community Detection in Dynamic Graphs Using Personalized Centrality
Analyzing massive graphs poses challenges due to the vast amount of data available. Extracting smaller relevant subgraphs allows for further visualization and analysis that would otherwise be too computationally intensive. Furthermore, many real data sets are constantly changing, and require algorithms to update as the graph evolves. This work addresses the topic of local community detection, o...
متن کاملFast Algorithm for Top-k Personalized PageRank Queries with Layered Graphs
In recent years, an efficient method of performing analyses and computations on graph networks, regarding recent and up-to-date data, has been needed due to continuous growth of datasets. Personalized PageRank is one of the most well-known computation methods for graphs. Personalized PageRank computes the relative importance or relevance with respect to a set of given nodes, called start nodes ...
متن کاملOn the Localization of the Personalized PageRank of Complex Networks
In this paper new results on personalized PageRank are shown. We consider directed graphs that may contain dangling nodes. The main result presented gives an analytical characterization of all the possible values of the personalized PageRank for any node.We use this result to give a theoretical justification of a recent model that uses the personalized PageRank to classify users of Social Netwo...
متن کاملStrong Localization in Personalized PageRank Vectors
Abstract. The personalized PageRank diffusion is a fundamental tool in network analysis tasks like community detection and link prediction. This tool models the spread of a quantity from a small, initial set of seed nodes, and has long been observed to stay localized near this seed set. We derive a sublinear upper-bound on the number of nonzeros necessary to approximate a personalized PageRank ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 11 شماره
صفحات -
تاریخ انتشار 2017